[1] Rychlik I, Gregorova D, Hradecka H. Distribution and function of plasmids inSalmonella enterica. Vet Microbiol 2006;112(1):1 − 10. http://dx.doi.org/10.1016/j.vetmic.2005.10.030.
[2] Hull DM, Harrell E, Harden L, Thakur S. Multidrug resistance and virulence genes carried by mobile genomic elements inSalmonella entericaisolated from live food animals, processed, and retail meat in North Carolina, 2018-2019. Int J Food Microbiol 2022;378:109821. http://dx.doi.org/10.1016/j.ijfoodmicro.2022.109821.
[3] Billman-Jacobe H, Liu YH, Haites R, Weaver T, Robinson L, Marenda M, et al. pSTM6-275, a conjugative IncHI2 plasmid ofSalmonella entericathat confers antibiotic and heavy-metal resistance under changing physiological conditions. Antimicrob Agents Chemother 2018;62(5):e02357 − 17. http://dx.doi.org/10.1128/AAC.02357-17.
[4] Rychlik I, Sebkova A, Gregorova D, Karpiskova R. Low-molecular-weight plasmid ofSalmonella entericaserovar Enteritidis codes for retron reverse transcriptase and influences phage resistance. J Bacteriol 2001;183(9):2852 − 8. http://dx.doi.org/10.1128/JB.183.9.2852-2858.2001.
[5] Morosini MI, Blázquez J, Negri MC, Cantón R, Loza E, Baquero F. Characterization of a nosocomial outbreak involving an epidemic plasmid encoding for TEM-27 inSalmonella entericasubspecies enterica serotype Othmarschen. J Infect Dis 1996;174(5):1015 − 20. http://dx.doi.org/10.1093/infdis/174.5.1015.
[6] Cantón R, González-Alba JM, Galán JC. CTX-M enzymes: origin and diffusion. Front Microbio 2012;3:110. http://dx.doi.org/10.3389/fmicb.2012.00110.
[7] Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol 2014;15(3):R46. http://dx.doi.org/10.1186/gb-2014-15-3-r46.
[8] Zhou FF, Xu Y. cBar: a computer program to distinguish plasmid-derived from chromosome-derived sequence fragments in metagenomics data. Bioinformatics 2010;26(16):2051 − 2. http://dx.doi.org/10.1093/bioinformatics/btq299.
[9] Krawczyk PS, Lipinski L, Dziembowski A. PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Res 2018;46(6):e35. http://dx.doi.org/10.1093/nar/gkx1321.
[10] Van Der Graaf-Van Bloois L, Wagenaar JA, Zomer AL. RFPlasmid: predicting plasmid sequences from short-read assembly data using machine learning. Microb Genom 2021;7(11):000683. http://dx.doi.org/10.1099/mgen.0.000683.
[11] Arredondo-Alonso S, Rogers MRC, Braat JC, Verschuuren TD, Top J, Corander J, et al. mlplasmids: a user-friendly tool to predict plasmid- and chromosome-derived sequences for single species. Microb Genom 2018;4(11):e000224. http://dx.doi.org/10.1099/mgen.0.000224.
[12] Carattoli A, Hasman H. PlasmidFinder and in silico pMLST: identification and typing of plasmid replicons in whole-genome sequencing (WGS). Methods Mol Biol 2020;2075:285 − 94. http://dx.doi.org/10.1007/978-1-4939-9877-7_20.
[13] Gomi R, Wyres KL, Holt KE. Detection of plasmid contigs in draft genome assemblies using customized Kraken databases. Microb Genom 2021;7(4):000550. http://dx.doi.org/10.1099/mgen.0.000550.
[14] Couturier M, Bex F, Bergquist PL, Maas WK. Identification and classification of bacterial plasmids. Microbiol Rev 1988;52(3):375 − 95. http://dx.doi.org/10.1128/mr.52.3.375-395.1988.
[15] Emond-Rheault JG, Hamel J, Jeukens J, Freschi L, Kukavica-Ibrulj I, Boyle B, et al. TheSalmonella entericaplasmidome as a reservoir of antibiotic resistance. Microorganisms 2020;8(7):1016. http://dx.doi.org/10.3390/microorganisms8071016.
Baidu
map