[1] |
Chen TM, Rui J, Wang QP, Zhao ZY, Cui JA, Yin L. A mathematical model for simulating the phase-based transmissibility of a novel coronavirus. Infect Dis Poverty 2020;9(1):24. https://doi.org/10.1186/s40249-020-00640-3. |
[2] |
Cheng XQ, Hu JL, Luo L, Zhao ZY, Zhang N, Hannah MN, et al. Impact of interventions on the incidence of natural focal diseases during the outbreak of COVID-19 in Jiangsu Province, China. Parasit Vectors 2021;14(1):483. https://doi.org/10.1186/s13071-021-04986-x. |
[3] |
Liu WK, Ye WJ, Zhao ZY, Liu C, Deng B, Luo L, et al. Modelling the emerging COVID-19 epidemic and estimating intervention effectiveness - Taiwan, China, 2021. China CDC Wkly 2021;3(34):716 − 9. https://doi.org/10.46234/ccdcw2021.177. |
[4] |
Zhao QL, Yang M, Wang Y, Yao LS, Qiao JG, Cheng ZY, et al. Effectiveness of interventions to control transmission of Reemergent cases of COVID-19 - Jilin Province, China, 2020. China CDC Wkly 2020;2(34):651 − 4. https://doi.org/10.46234/ccdcw2020.181. |
[5] |
Zhao ZY, Niu Y, Luo L, Hu QQ, Yang TL, Chu MJ, et al. The optimal vaccination strategy to control COVID-19: a modeling study in Wuhan City, China. Infect Dis Poverty 2021;10(1):140. https://doi.org/10.1186/s40249-021-00922-4. |
[6] |
Zhao ZY, Zhu YZ, Xu JW, Hu SX, Hu QQ, Lei Z, et al. A five-compartment model of age-specific transmissibility of SARS-CoV-2. Infect Dis Poverty 2020;9(1):117. https://doi.org/10.1186/s40249-020-00735-x. |
[7] |
Ross R. Some a priori pathometric equations. Br Med J 1915;1(2830):546 − 7. https://doi.org/10.1136/bmj.1.2830.546. |
[8] |
Hamer WH. The Milroy lectures on epidemic disease in England—the evidence of variability and of persistency of type (LECTURE I). Lancet 1906;167(4305):569-74. https://doi.org/10.1016/S0140-6736(01)80187-2. |
[9] |
Foppa IM. A historical introduction to mathematical modeling of infectious diseases: seminal papers in epidemiology. London: Academic Press. 2017. http://dx.doi.org/10.1016/C2014-0-01347-0. |
[10] |
Hamer WH. The Milroy lectures on Epidemic disease in England—the evidence of variability and of persistency of type (LECTURE III). Lancet 1906;167(4307):733-9. https://doi.org/10.1016/S0140-6736(01)80340-8. |
[11] |
Frost WH. Some conceptions of epidemics in general. Am J Epidemiol 1976;103(2):141 − 51. https://doi.org/10.1093/oxfordjournals.aje.a112212. |
[12] |
Kermack WO, McKendrick AG. A contribution to the mathematical theory of epidemics. Philos Trans Roy Soc A: Math Phys Eng Sci 1927;115(772):700 − 21. https://doi.org/10.1098/rspa.1927.0118. |
[13] |
Kermack WO, McKendrick AG. Contributions to the mathematical theory of epidemics. II.—The problem of endemicity. Philos Trans Roy Soc A: Math Phys Eng Sci 1932;138(834):55 − 83. https://doi.org/10.1098/rspa.1932.0171. |
[14] |
Kermack WO, McKendrick AG. Contributions to the mathematical theory of epidemics. III.—Further studies of the problem of endemicity. Philos Trans Roy Soc A: Math Phys Eng Sci 1933;141(843):94 − 122. https://doi.org/10.1098/rspa.1933.0106. |
[15] |
MacDonald G. The epidemiology and control of malaria. London: Oxford University Press. 1957. https://searchworks.stanford.edu/view/L110357. |
[16] |
Lipsitch M, Cohen T, Cooper B, Robins JM, Ma S, James L, et al. Transmission dynamics and control of severe acute respiratory syndrome. Science 2003;300(5627):1966 − 70. https://doi.org/10.1126/science.1086616. |
[17] |
Galvani AP, Lei XD, Jewell NP. Severe acute respiratory syndrome: temporal stability and geographic variation in case-fatality rates and doubling times. Emerg Infect Dis 2003;9(8):991 − 4. https://doi.org/10.3201/eid0908.030334. |
[18] |
Chowell G, Fenimore PW, Castillo-Garsow MA, Castillo-Chavez C. SARS outbreaks in Ontario, Hong Kong and Singapore: the role of diagnosis and isolation as a control mechanism. J Theor Biol 2003;224(1):1 − 8. https://doi.org/10.1016/s0022-5193(03)00228-5. |
[19] |
Donnelly CA, Fisher MC, Fraser C, Ghani AC, Riley S, Ferguson NM, et al. Epidemiological and genetic analysis of severe acute respiratory syndrome. Lancet Infect Dis 2004;4(11):672 − 83. https://doi.org/10.1016/s1473-3099(04)01173-9. |
[20] |
Wang WD, Ruan SG. Simulating the SARS outbreak in Beijing with limited data. J Theor Biol 2004;227(3):369 − 79. https://doi.org/10.1016/j.jtbi.2003.11.014. |
[21] |
Jin Z, Zhang JP, Song LP, Sun GQ, Kan JL, Zhu HP. Modelling and analysis of influenza A (H1N1) on networks. BMC Public Health 2011;11 Suppl 1(Suppl 1):S9. http://dx.doi.org/10.1186/1471-2458-11-s1-s9. |
[22] |
Nishiura H, Iwata K. A simple mathematical approach to deciding the dosage of vaccine against pandemic H1N1 influenza. Euro Surveill 2009;14(45):19396. https://doi.org/10.2807/ese.14.45.19396-en. |
[23] |
Sypsa V, Hatzakis A. School closure is currently the main strategy to mitigate influenza A(H1N1)v: a modeling study. Euro Surveill 2009;14(24):19240. https://doi.org/10.2807/ese.14.24.19240-en. |
[24] |
Chen TM, Zhang SS, Feng J, Xia ZG, Luo CH, Zeng XC, et al. Mobile population dynamics and malaria vulnerability: a modelling study in the China-Myanmar border region of Yunnan Province, China. Infect Dis Poverty 2018;7(1):36. https://doi.org/10.1186/s40249-018-0423-6. |
[25] |
Ren JC, Yan YJ, Zhao HM, Ma P, Zabalza J, Hussain Z, et al. A novel intelligent computational approach to model epidemiological trends and assess the impact of non-pharmacological interventions for COVID-19. IEEE J Biomed Health Inform 2020;24(12):3551 − 63. https://doi.org/10.1109/jbhi.2020.3027987. |
[26] |
Odusanya OO, Odugbemi BA, Odugbemi TO, Ajisegiri WS. COVID-19: a review of the effectiveness of non-pharmacological interventions. Niger Postgrad Med J 2020;27(4):261 − 7. https://doi.org/10.4103/npmj.npmj_208_20. |
[27] |
AlJohani NI, Mutai K. Effect of non-pharmacological interventions on the COVID-19 epidemic in Saudi Arabia. Epidemiol Infect 2021;149:e252. https://doi.org/10.1017/s0950268821002612. |
[28] |
He GH, Zeng FF, Xiao JP, Zhao JG, Liu T, Hu JX, et al. When and how to adjust non-pharmacological interventions concurrent with booster vaccinations against COVID-19 - Guangdong, China, 2022. China CDC Wkly 2022;4(10):199 − 206. https://doi.org/10.46234/ccdcw2022.048. |
[29] |
Chowdhury R, Heng K, Shawon MSR, Goh G, Okonofua D, Ochoa-Rosales C, et al. Dynamic interventions to control COVID-19 pandemic: a multivariate prediction modelling study comparing 16 worldwide countries. Eur J Epidemiol 2020;35(5):389 − 99. https://doi.org/10.1007/s10654-020-00649-w. |
[30] |
Spiliotis K, Koutsoumaris CC, Reppas AI, Papaxenopoulou LA, Starke J, Hatzikirou H. Optimal vaccine roll-out strategies including social distancing for pandemics. iScience 2022;25(7):104575. https://doi.org/10.1016/j.isci.2022.104575. |
[31] |
Bhatia S, Imai N, Watson OJ, Abbood A, Abdelmalik P, Cornelissen T, et al. Lessons from COVID-19 for rescalable data collection. Lancet Infect Dis 2023;23(9):e383 − 8. https://doi.org/10.1016/s1473-3099(23)00121-4. |
[32] |
Rakhshan SA, Nejad MS, Zaj M, Ghane FH. Global analysis and prediction scenario of infectious outbreaks by recurrent dynamic model and machine learning models: a case study on COVID-19. Comput Biol Med 2023;158:106817. https://doi.org/10.1016/j.compbiomed.2023.106817. |
[33] |
Deng B, Niu Y, Xu JW, Rui J, Lin SN, Zhao ZY, et al. Mathematical models supporting control of COVID-19. China CDC Wkly 2022;4(40):895 − 901. https://doi.org/10.46234/ccdcw2022.186. |
[34] |
Baharom M, Ahmad N, Hod R, Arsad FS, Tangang F. The impact of meteorological factors on communicable disease incidence and its projection: a systematic review. Int J Environ Res Public Health 2021;18(21):11117. https://doi.org/10.3390/ijerph182111117. |
[35] |
Martens MJ, Logan BR. A unified approach to sample size and power determination for testing parameters in generalized linear and time-to-event regression models. Stat Med 2021;40(5):1121 − 32. https://doi.org/10.1002/sim.8823. |
[36] |
Qi BG, Liu NK, Yu SC, Tan F. Comparing COVID-19 case prediction between ARIMA model and compartment model - China, December 2019-April 2020. China CDC Wkly 2022;4(52):1185 − 8. https://doi.org/10.46234/ccdcw2022.239. |
[37] |
Zhao ZY, Chen Q, Wang Y, Chu MJ, Hu QQ, Hannah MN, et al. Relative transmissibility of shigellosis among different age groups: a modeling study in Hubei Province, China. PLoS Negl Trop Dis 2021;15(6):e0009501. https://doi.org/10.1371/journal.pntd.0009501. |
[38] |
Yang M, Cheng XQ, Zhao ZY, Li PH, Rui J, Lin SN, et al. Feasibility of controlling hepatitis E in Jiangsu Province, China: a modelling study. Infect Dis Poverty 2021;10(1):91. https://doi.org/10.1186/s40249-021-00873-w. |
[39] |
Wang Y, Zhao ZY, Wang MZ, Hannah MN, Hu QQ, Rui J, et al. The transmissibility of hepatitis C virus: a modelling study in Xiamen City, China. Epidemiol Infect 2020;148:e291. https://doi.org/10.1017/s0950268820002885. |
[40] |
Kermack WO, McKendrick AG. Contributions to the mathematical theory of epidemics—I. Bull Math Biol 1991;53(1-2):33 − 55. https://doi.org/10.1007/bf02464423. |
[41] |
Wang Y, Zhao ZY, Zhang H, Lin Q, Wang N, Ngwanguong Hannah M, et al. Estimating the transmissibility of hepatitis C: a modelling study in Yichang City, China. J Viral Hepat 2021;28(10):1464 − 73. https://doi.org/10.1111/jvh.13582. |
[42] |
Nakamura GM, Cardoso GC, Martinez AS. Improved susceptible-infectious-susceptible epidemic equations based on uncertainties and autocorrelation functions. Roy Soc Open Sci 2020;7(2):191504. https://doi.org/10.1098/rsos.191504. |
[43] |
Yang F, Yang Q, Liu XX, Wang P. SIS evolutionary game model and multi-agent simulation of an infectious disease emergency. Technol Health Care 2015;23 Suppl 2:S603-13. http://dx.doi.org/10.3233/thc-150999. |
[44] |
Brown GD, Porter AT, Oleson JJ, Hinman JA. Approximate Bayesian computation for spatial SEIR(S) epidemic models. Spat Spatiotemporal Epidemiol 2018;24:27 − 37. https://doi.org/10.1016/j.sste.2017.11.001. |
[45] |
Zhao ZY, Chen Q, Zhao B, Hannah MN, Wang N, Wang YX, et al. Relative transmissibility of shigellosis among male and female individuals: a modeling study in Hubei Province, China. Infect Dis Poverty 2020;9(1):39. https://doi.org/10.1186/s40249-020-00654-x. |
[46] |
Tracy M, Cerdá M, Keyes KM. Agent-based modeling in public health: current applications and future directions. Annu Rev Public Health 2018;39:77 − 94. https://doi.org/10.1146/annurev-publhealth-040617-014317. |
[47] |
Yin L, Zhang H, Li Y, Liu K, Chen TM, Luo W, et al. A data driven agent-based model that recommends non-pharmaceutical interventions to suppress Coronavirus disease 2019 resurgence in megacities. J Roy Soc Interface 2021;18(181):20210112. https://doi.org/10.1098/rsif.2021.0112. |
[48] |
Venkatramanan S, Sadilek A, Fadikar A, Barrett CL, Biggerstaff M, Chen JZ, et al. Forecasting influenza activity using machine-learned mobility map. Nat Commun 2021;12(1):726. https://doi.org/10.1038/s41467-021-21018-5. |
[49] |
Gwizdałła T. Viral disease spreading in grouped population. Comput Methods Programs Biomed 2020;197:105715. https://doi.org/10.1016/j.cmpb.2020.105715. |
[50] |
Escobar Ospina ME, Perdomo JG. A growth model of human papillomavirus type 16 designed from cellular automata and agent-based models. Artif Intell Med 2013;57(1):31 − 47. https://doi.org/10.1016/j.artmed.2012.11.001. |
[51] |
Rui J, Li KG, Wei HJ, Guo XH, Zhao ZY, Wang Y, et al. MODELS: a six-step framework for developing an infectious disease model. Infect Dis Poverty 2024;13(1):30. https://doi.org/10.1186/s40249-024-01195-3. |
[52] |
Arshad S, Khalid S, Javed S, Amin N, Nawaz F. Modeling the impact of the vaccine on the COVID-19 epidemic transmission via fractional derivative. Eur Phys J Plus 2022;137(7):802. https://doi.org/10.1140/epjp/s13360-022-02988-x. |