[1] |
WHO. WHO director-general’s opening remarks at the media briefing on COVID-19 - 11 March 2020. World Health Organization. 2020. https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020. [2020-3-11].
|
[2] |
Liang JY, Liu RB, He W, Zeng ZQ, Wang YQX, Wang BY, et al
. Infection rates of 70% of the population observed within 3 weeks after release of COVID-19 restrictions in Macao, China. J Infect
2023
;
86
(
4
):
402
−
4
.
|
[3] |
Zeng ZQ, Qu W, Liu RB, Guan WD, Liang JY, Lin ZJ, et al
. Real-time assessment of COVID-19 epidemic in Guangdong Province, China using mathematical models. J Thorac Dis
2023
;
15
(
3
):
1517
−
22
.
|
[4] |
Zhou MZ, Kan MY
. The varying impacts of COVID-19 and its related measures in the UK: A year in review. PLoS One
2021
;
16
(
9
):
e0257286
.
|
[5] |
Elliott P, Bodinier B, Eales O, Wang HW, Haw D, Elliott J, et al
. Rapid increase in omicron infections in england during december 2021: REACT-1 study. Science
2022
;
375
(
6587
):
1406
−
11
.
|
[6] |
Kirsebom FCM, Andrews N, Stowe J, Toffa S, Sachdeva R, Gallagher E, et al
. COVID-19 vaccine effectiveness against the omicron (BA. 2) variant in England. Lancet Infect Dis
2022
;
22
(
7
):
931
−
3
.
|
[7] |
Okabe Y, Shudo A
. Microscopic numerical simulations of epidemic models on networks. Mathematics
2021
;
9
(
9
):
932
.
|
[8] |
Huang AQ, Liu XJ, Rao CR, Zhang Y, He YF
. A new container throughput forecasting paradigm under COVID-19. Sustainability,
2022
;
14
(
5
):
2990
.
|
[9] |
Dong R, Ni SW, Ikuno S
. Nonlinear frequency analysis of COVID-19 spread in Tokyo using empirical mode decomposition. Sci Rep
2022
;
12
(
1
):
2175
.
|
[10] |
Saâdaoui F, Mefteh-Wali S, Ben Jabeur S
. Multiresolutional statistical machine learning for testing interdependence of power markets: a Variational Mode Decomposition-based approach. Expert Syst Appl
2022
;
208
:
118161
.
|
[11] |
Qu W, Chui CK, Deng GT, Qian T
. Sparse representation of approximation to identity. Anal Appl
2022
;
20
(
4
):
815
−
37
.
|
[12] |
Qian T, Zhang Y, Liu WQ, Qu W
. Adaptive Fourier decomposition-type sparse representations versus the Karhunen-Loève expansion for decomposing stochastic processes. Math Methods Appl Sci
2023
;
46
(
13
):
14007
−
25
.
|
[13] |
Lu GB, Yang ZF, Qu W, Qian T, Liu ZG, He W, et al
. Daily fluctuations in COVID-19 infection rates under Tokyo's epidemic prevention measures–new evidence from adaptive Fourier decomposition. Front Public Health
2023
;
11
:
1245572
.
|
[14] |
Qian T, Zhang LM, Li ZX
. Algorithm of adaptive fourier decomposition. IEEE Trans Signal Process,
2011
;
59
(
12
):
5899
−
906
.
|
[15] |
Qian T, Wang YB
. Adaptive Fourier series – a variation of greedy algorithm. Adv Comput Math
2011
;
34
(
3
):
279
−
93
.
|
[16] |
Qian T, Wang JZ, Mai WX
. An enhancement algorithm for cyclic adaptive fourier decomposition. Appl Comput Harmon Anal
2019
;
47
(
2
):
516
−
25
.
|
[17] |
Qian T
. Two-dimensional adaptive fourier decomposition. Math Methods Appl Sci
2016
;
39
(
10
):
2431
−
48
.
|
[18] |
Qian T
. Sparse representations of random signals. Math Methods Appl Sci
2022
;
45
(
8
):
4210
−
30
.
|
[19] |
Hon C, Liu ZG, Qian T, Qu W, Zhao JM. Trends by adaptive fourier decomposition and application in prediction. Int J Wavelets Multiresolut Inf Process. http://dx.doi.org/10.1142/S0219691324500140.
|
[20] |
Qu W, Qian T, Deng GT
. A stochastic sparse representation:
n-best approximation to random signals and computation. Appl Comput Harmon Anal
2021
;
55
:
185
−
98
.
|
[21] |
Pearson K
. VII. Note on regression and inheritance in the case of two parents. Proc Roy Soc London
1895
;
58
(
347-352
):
240
−
2
.
|
[22] |
Tartof SY, Slezak JM, Fischer H, Hong V, Ackerson BK, Ranasinghe ON, et al
. Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: a retrospective cohort study. Lancet
2021
;
398
(
10309
):
1407
−
16
.
|
[23] |
Ghosh A, Nundy S, Ghosh S, Mallick TK
. Study of COVID-19 pandemic in London (UK) from urban context. Cities
2020
;
106
:
102928
.
|
[24] |
Jarvis CI, Van Zandvoort K, Gimma A, Prem K, CMMID COVID-19 working group, Klepac P, et al
. Quantifying the impact of physical distance measures on the transmission of COVID-19 in the UK. BMC Med
2020
;
18
(
1
):
124
.
|